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Introduction

• Solar Dynamic Observatory (SDO) mission has 
very tight pointing jitter requirements:
– 5 arcsec (3 σ) between 0.02 and 50 Hz
– 1 arcsec (3 σ) above 30 Hz
– Wheel allocation is 2.55 arcsec (3 σ), TBR

• Objective of this analysis is to verify requirements 
can be met using preliminary finite element model 
and reaction wheel disturbance model

• Analytical results provide direct comparison 
between two different commercial wheels and their 
jitter performance

• Results will be reported to project to assist SDO 
wheel selection process 
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DOCS - Disturbance Analysis

• DOCS: Disturbances-Optics-Controls-Structures – Framework 
for modeling and analysis of precision opto-mechanical space 
systems [H. Gutierrez et. al., MIT Space Systems Lab]

• DOCS toolbox developed by Dr. Carl Blaurock at MIDE Tech. is 
a MATLAB environment for efficiently solving dynamic 
problems - fast system performance evaluation and design 
parameter optimization (available to Goddard employees)

• Three types of disturbance analysis included in DOCS 
disturbance module:
– Time domain: disturbance measured or modeled as function of time

– Frequency domain: disturbance measured or modeled in power spectral 
densities (PSDs)

– Lyapunov analysis: disturbance modeled as output of a shaping filter 
driven by white noise
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• Performance spectral density matrix can be computed from 
disturbance spectral density matrix and system transfer 
function matrix:

• Variance of ith performance metric (zi) is the area under the 
power spectral density curve (assume zero-mean process)

Jitter Analysis Approach

• Measured reaction wheel disturbances, w, are propagated 
through the structural model to estimate the pointing jitter 
performance, zperf.
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SDO Observatory (Stowed Config.)
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• Swales conducted finite element analysis and provided three 
models: beginning of life (BOL), 15% Fuel (no oxidizer), and 
end of life (EOL)
– SDO deployed frequencies ωr and normal modes φr to 100 Hz 

– Four reaction wheel input nodes and six optical instrument output 
nodes (Guide telescope, HMI, EVE, Magritte, Spectre, and KCOR)

• Create structural model from frequencies and normal modes

• State-space modal model

Structural Model
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Transfer function from w to z:
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Plant Transfer Function

• No optical model available – output of the system is defined 
as the rotation around Y and Z axes (Ry, Rz) of instruments

• Assume translational motions and rotation around the line-
of-sight will not affect pointing 
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Reaction Wheel Disturbances

• Wheel force and torque disturbances are measured at steady-
state wheel speeds
– Data collected at 30 RPM increments from 0 to 6000 RPM

– Fine balanced wheel

Wheel speed (RPM) Frequency (Hz)
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• PSD data available at 
discrete wheel speeds

• Data quality:
– Low frequency data is 

inaccurate due to 
frequency resolution

– High frequency data may 
be contaminated by test 
stand modes

– Limit frequency range to 
2-200 Hz
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• Four wheels mounted on each face of the bus 
– Wheel spin axis is 30 degrees from the surface normal

• Wheel induced force and torques must be transformed to 
spacecraft frame
– Create rotation matrices (R) from local wheel frame to spacecraft 

body frame for each wheel

– Account for additional moment caused by wheel disturbance 
force since origin of wheel frame does not coincide with 
spacecraft c.g.

• Transformed spectral density matrix:

Disturbance Input
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Jitter Analysis Output

• Jitter analysis outputs for Guide Telescope rotations around Y 
and Z axes with 4 wheels spinning at 500 RPM simultaneously
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• RMS pointing of each instrument is the root-sum-square 
(RSS) of σRy and σRz at the corresponding structural node

• RMS pointing is computed at each wheel speed, assuming 
quasi-steady-state operations

• All four wheels are assumed to spin at the same speed and 
impart similar disturbances on the spacecraft

• Two types of wheel disturbances are used for jitter analyses

• Total of six cases are examined for each instrument
– BOL, 15% Fuel, and EOL

– Uniform 0.2% and 0.5% damping  

SDO Jitter Analysis
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Guide Telescope Jitter results

Assume 0.2% uniform damping
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Summary

• Preliminary wheel jitter analyses show that pointing jitter 
is less than 0.1 arcsec for reasonable wheel speed range

• Both candidate wheels are capable of meeting jitter 
requirements


